NEW LOW ENERGY

E³ Drying cabinets

State of the Art Design, Energy Efficient, Safe and Sustainable

E3 fan units are able to remove approximately double the moisture of a convection unit, the time taken to dry a load is therefore halved.

Key features

- Temp range: 30°C to 80°C (ambient + 50°C)
- Integral 7 day timer with touch screen digital controller
- Fully insulated with adjustable vent cover
- Stainless steel chamber
- Manual or automatic overheat reset
- On screen historical trending (48 hours)
- Lockable castors on the 425 and 885 litre models
- Low energy consumption More than 50% lower than traditional cabinets
- Low heat output reducing air conditioning costs
- Excellent stability < +/ 0.6 °C
- High accuracy Pt100B duplex sensors < 0.8 °C

Options

- Audible warnings
- Access ports (25, 50, 75 or 100mm)
- Traceable calibration to national standards
- Bespoke stands and stacking kits
- Wall mounting brackets (100 & 200 versions only)
- Extractor unit
- Extended warranty
- Bespoke solutions available upon request

What is \mathbf{E}^3 ?

E3 is our market leading brand for scientifically developed, cutting edge, sustainable, eco-friendly Drying Cabinet.

Whether you are a single laboratory needing to buy greener and smarter, or a larger organisation concerned with reducing overall running costs, GPE's E3 Drying Cabinet can provide the solution that's best for you.

Design

The exterior is constructed from sheet steel and finished in an easy clean powder coated paint.

The interior chamber is made from 304 stainless steel and all units have high density insulation.

The 100 and 200 litre models have sliding glass doors and the 425 and 885 litre models have double glazed hinged doors.

Heating

Heated by Incoloy sheathed elements which are positioned in the lower chamber and covered with 304 stainless steel guard.

Cat. No.	Model		
Natural convection			
GENLE3DWC100/N	E3DWC100/N, 100 I drying cabinet		
GENLE3DWC200/N	E3DWC200/N, 200 I drying cabinet		
GENLE3DWC425/N	E3DWC425/N, 425 I drying cabinet		
Fan circulation			
GENLE3DWC100/F	E3DWC100/F, 100 I drying cabinet		
GENLE3DWC200/F	E3DWC200/F, 200 I drying cabinet		
GENLE3DWC425/F	E3DWC425/F, 425 I drying cabinet		
GENLE3DWC885/F	E3DWC885/F, 885 I drying cabinet		
Options			
GENLE3EXT	Extractor system		

Controls

The control system comprises of a bespoke touch screen user interface.

Using 2 individual PT100 sensors, the control system offers both accurate temperature control and an integral overheat system.

The cabinets automatically turn on and off (up to 2 times per day) with boost and extend functions available outside of the set times.

Oven trending is displayed for up to 48 hours and optional upgrades are available for alarm outputs.

Capacity (I)	100	200	425	885
Max. temperature (°C)	80	80	80	80
Shelves supplied / max.	3/4	3/4	3/12	3/12
Doors	Sliding, toughened glass	Sliding, toughened glass	Double glazed, hinged	Double glazed, hinged
External W×D×H (mm)	740x420x660	1000x500x770	600x650x1755	1180x650x1755
Internal W×D×H (mm)	670x370x400	930x450x490	530x590x1350	1110x590x1350
Net weight	50kg	75kg	140kg	210kg
Max. power consumption (W)	500	750	1750	2500
Power requirements	220-240 V, 50 Hz, 1 ph.			
Construction	Powder coated paint, with stainless steel interior			
Energy consumption	(kWh/day @75 °C)*			
Natural convection	5.56	8.65	13.27	N/A
Fan circulation	8.35	12.97	18.32	27.18

Moisture removal - convection vs fan circulation

Unit - set at 75 °C	Water loss (g/hr)	kWh/day	
Unit A (82 I)	22.02	11.184	
E3 Convection (100 I)	22.80	5.560	
E3 Fan (100 l)	43.56	8.350	

^{*}All units tested were a set temperature of 75°C with an empty chamber and the ambient temperature was 22 °C.

Energy consumption will differ based on set temperature and ambient conditions.

Fan units are able to remove approximately double the moisture of a convection unit, the time taken to dry a load is therefore halved.

As a result the energy used to dry a load is actually lower for a fan unit compared to a natural convection unit.

